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6. ANALYSIS OF INFLATABLE LANDING SYSTEMS

Use of a high stroke, inflatable landing system for a Mars landing was
investigated. This investigation was initiated because of the potential
capability of achieving a landing where the equipment experiences much lower
landing decelerations than those associated with hard landers and not incur-
ring the cost of terminal propulsion and terminal guidance systems required
for soft landers. This study was constrained to landing velocities of 50 to
250 ft/sec and payload weights of 100 to 400 1b. These are considered réhges
of interest for a low cost, 1973 Mars lander and are consistent with the use

of a parachute as a single, terminal decelerator.

Objectives established for this study were to determine feasibility of
an inflatable landing system for Mars landings and to provide preliminary
estimates of dynamic characteristics. The key parameter needed to aid in

defining feasibility is the energy absorption capability of the torus.



6.1 Summary

A model drop test program was performed to empirically determine attenua-
tion characteristics of the inflatable torus landing system. Test data were
used to derive analytical methods required for conducting a parametric analy-
sis. Variation in the following parameters were determined as a function of
landing velocity and payload weight:

o Landing System Weight

0 Maximum Load Factor

0 System Geometry

o Initial Inflation Pressure

In addition to payload weight, payload shape has an effect on landing
system weight. Factors influencing shape, such as payload packaging density

and thermal control considerations, were studied also.

The following items needed to define landing system weight were investi-
gated to a depth sufficient for parametric studies:

o Fabric Materials

o Elastomers

o Inflation Systems

Also, payload attachment methods, alternate landing system configurations

and methods of rebound damping were investigated and are reported herein.

The primary conclusion reached as a result of this study is that an
inflatable torus landing system is feasible for the payload weights, veloci-
ties, and study constraints considered. Furthermore, it was verified that a
simple analytical model can be used to adequately predict stroke and acceler-

ations for a torus landing flat.



6.2 Technical Approach

The technical approach used to insure achievement of program objectives
consists of three parts:

o Model Tests

o Analytical Methods

o Parametric Studies

A rigorous method of analysis for predicting landing loads and enérgy
absorption capability of the torus lander was not available. Therefore,;a
model test program was conducted to provide information for empirically
deriving an analytical method. Because of overall study program objectives
and known limitations of the torus model, obtaining highly accurate test data
was not required. The main criterion for test data was that it be sufficient-
ly accurate to determine with confidence landing system feasibility. Payload
weights, inflation pressures, landing velocities, and landing attitudes (flat

and end landings) were the test program variables.

Analytical methods provide the bridge between empirical studies of a
model and parametric studies of a Mars lander. It is important that predicted
dynamic response of model using selected analytical methods agrees with
measured response. After this capability is established, the methods may be

used with confidence to study full scale, Mars landers.

The last part of the approach involves conducting parametric studies
consisting primarily of defining design requirements for torus landing system.
Results from these parametric studies provide capability for rapidly selecting
torus geometrical proportions and inflation pressures required to achieve a
minimum landing system weight for a lander designed to particular velocities.
In addition, trade-offs can be made easily between weight and landing acceler-

ations.



6.3 Lander Description

For this study, the lander is assumed to be comprised of two parts:
landing system and payload. The landing system consists of inflatable torus
and inflation system. The payload consists of science equipment, payload
structure, gimbal ring, and insulation. A typical lander design is shown in

A typical landing operation includes the following events. A supersonic
ring sail parachute is deployed at an altitude of 10,000 feet and the lander
is released from the aeroshell by explosive bolts immediately thereafter.
Separation from the aeroshell is by differential drag. As the lander descends,
the torus is inflated. Approximately 40-50 seconds are allowed for torus
inflation. Shorter inflation times may be preferred in a dense atmosphere
where the increased drag would lengthen descent time, thus cutting post landed
view time. At an altitude of 100 feet the parachute is released, along with
the inflation system pressure tank, by firing explosive bolts and the lander
free-falls to the surface. Vertical velocity at the time of parachute release
is about 120 ft/sec and increases to 130 ft/sec at surface contact. To deter-
mine limit velocity for landing system design, it is assumed that the lander
has achieved a horizontal velocity equivalent to nominal wind velocity of
118 ft/sec and landing occurs on a 20 degree slope. Based on these assump-
tions, the limit velocity (component normal to 20 degree slope) is 153 ft/sec.
After the lander comes to rest, the payload package rotates to achieve an
upright position (180° rotation if required) and begins to deploy the equip-
ment. Lander operation duration is 3 day minimum with a design objective of
90 days.

The typical design, shown in Figure 6.3-1, is a single, non-venting
inflatable torus with a flat cylindrical payload installation. The total
lander weight is 796 pounds, with 420 pounds of the total attributed to land-
ing system including torus and inflation system. When inflated to the nominal
design pressure of 10 psig, the torus has an outside diameter of 198.3 inches,

an inside diameter of 41.7 inches, and a cross-sectional radius of 78.3 inches.
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The inflatable torus is constructed from Nomex fabric coated with a
silicone elastomer for gas retention. An increase in fabric strength is

required in the area around the payload gimbal ring to accommodate higher

loads which exist in that area.

The payload package is supported by a single gimbal ring which provides
a single axis pivot for payload rotation. Thermal control of equipment is
provided by insulation and isotope heaters. The payload contains 39 pounds
of science equipment including, facsimile camera, gas chromatograph, mass
spectormeter, soil sampler, life detector, atmospheric hygrometer, soil hygro-
meter and probe, atmosphere temperature sensor, atmosphere pressure sensor,

and anemometer.



6.4 Environments and Design Criteria

6.4.1 ENVIRONMENTS - The landing system is exposed to many environments
during the various mission phases. In addition, materials and components are

qualified using environments significantly more severe than those expected in

flight. Those environments having significant effects on design of an inflat
able structure are the heat sterilization environment for qualifying parts
and materials, vacuum environment during interplanetary cruise, and Mars

atmospheric environment during the post-landing phase.

Heat Sterilization - Heat sterilization environment for qualification of

parts and materials is as follows: six cycles of 96 hours each at 275°F.

Total time at temperature is 576 hours. Atmosphere is dry nitrogen.

Vacuum - The landing system is exposed to the vacuum of space for

230 days at temperatures ranging from -100°F to +100°F.

Mars Atmosphere - After the lander comes to rest on the surface of Mars,

it is exposed to the following environments: atmospheric pressure, 4.0 mb to
20 mb; temperature, -154°F to +120°F; winds, O to 220 ft/sec (118 ft/sec

nominal).

6.4.2 DESIGN CRITERIA - Specific criteria related to initial lander
conditions, factors of safety, and pressurization factors are defined. These
criteria provide a basis for defining design conditions and resulting struc-

tural requirements of the landing system.

Initial Conditions
Velocity, 50 to 250 ft/sec (limit)
Payload Weight, 100 to 400 1b

Factors of Safety

Landing System - Designed for ultimate total energy [(limit kinetic
plus limit potential energy) x 1.25].

Payload Structure - Designed for ultimate loads (limit loads result-

ing from limit total energy x 1.25).



Pressurization Factors

Pressure Vessels -~ Designed to withstand proof pressure of 1.67
times maximum operating pressure without yielding. Designed to withstand

burst pressure of 2.22 times maximum operating pressure without failure.

Inflatable Structure - Designed for ultimate loads (limit loads
resulting from limit total energy x 2.5).

The landing system shall be designed to land on surfaces containing slopes
from 0 to 20 degrees with bearing capacities ranging from 200 lb/ft2 to infin-

ity. Landing system shall maintain sufficient pressure for three days to

support payload above the surface.
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6.5 Landing System Analysis

Static and dynamic tests of an inflatable torus lander model were con-
ducted in order to obtain empirical data needed to design the landing system.
Based on these test data, analytical methods were derived to be used for
parametric studies. In this section, the test program is briefly discussed
and analytical methods are presented. Further discussion of test program is

given in the Appendix.

6.5.1 TEST PROGRAM - Key parameters to be determined for design of
inflatable landing systems are stroke and acceleration. Model tests were
conducted to determine values of these parameters during flat and end landings

for various landing velocities, inflation pressures, and payload weights.

Model Description - The test model, shown in Figure 6.5.1-1, consists of

an inflated torus continuously attached to an inner payload ring. The torus
was constructed of Dacron fabric coated with polyurethane sealant. Grid lines
were painted on the external surface of the torus to aid in defining lander
orientation at impact and observing torus deformations during the attenuation
process. Different payload weights were obtained by attaching steel plates
to the aluminum alloy payload ring. Provisions for mounting test instrumenta-
tion were also incorporated in the payload ring design. An inflation valve

is accessable through the payload ring.

Static Tests - Static tests were conducted to determine payload stroke

and internal torus pressure as a function of load applied to payload ring.
Tests were conducted for both flat and end loading orientations as shown in
Figure 6.5.1-2., Load-stroke relationships obtained from these tests are used

in conjunction with analytical models discussed later.

Three flat loading tests were performed with initial torus pressures of
2.0, 4.0, and 6.0 psig. End loading tests were conducted at 2.0 and 4.0 psig.

For each test, load was applied until the desired maximum stroke was obtained.

Dynamic Tests - Drop tests were conducted to determine the effects of

landing velocity, payload weight and torus pressure on payload stroke and

acceleration. Tests were conducted in the Zero Gravity Research Facility at
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the NASA Lewis Research Center in Cleveland, Ohio. Chamber pressure was about
5 mb for all tests in order to simulate Mars atmospheric pressure. Seventeen
flat and seven end drop tests were performed with payload weight ranging from
4.1 pounds to 11.0 pounds and inflation pressures ranging from 2.1 psig to

6.0 psig. Landing velocities varied from 7 ft/sec to 100 ft/sec.

For a given payload weight, inflation pressure, and landing velocity;
the maximum payload stroke resulting from end landing was approximately twice
that obtained from flat landings. However, accelerations experienced by the

payload during end landings were about one-half those experienced during flat

landings.

6.5.2 ANALYTICAL METHODS ~ In the following paragraphs, analytical
methods used for parametric studies of inflatable torus landing systems are
presented. Analytical models used to predict payload stroke and acceleration
are described. Verification of selected models is shown by comparing pre-
dicted values with test data. In addition, pertinent steps required in

parametric analyses are presented.

6.5.2.1 Analytical models. — For parametric studies, an idealized

analytical model is required to represent the landing system during impact.

A number of analytical models were studied to select a model for predicting
both stroke and acceleration. Although the actual landing system is composed
of many degrees of freedom, a simple dynamic model consisting of a minimum
number of degrees of freedom is adequate provided it closely approximates

behavior of the actual lander.

The simplest dynamic model for flat landing is the single degree of
freedom system shown in Figure 6.5.2-1. Mass is composed of the payload mass
(mp) and a portion of the torus mass (smt). The spring (KF) is the static
spring constant of torus determined for flat loading. For a given payload
mass, torus mass, and spring constant; dynamic behavior of the system is
altered by changing ¢ . The equation of motion for this system is:

(mp + emt) X + KFX = (mp + emt) g (1

12



PRELIMINARY ANALYTICAL MODEL
FOR FLAT LANDING
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Initial conditions are assumed to be:

X(0) =0

X(0) = V0

When the gravitational force term in Equation (1) is neglected, payload

response is expressed as:

X= Xg sin (mnt)
W
n
Where, w, = KF
(m + em )

Determining adequacy of this model for predicting response of torus is

accomplished in the following manner.

Results of static tests, discussed in Appendix A, were used to determine
the spring constant (KF). Since the actual spring rate is slightly non-
linear and a linear spring is used in analytical model, an effective linear
spring is derived from test results. The effective spring constant is deter-
mined by equating the energy stored in the linear spring when subjected to a
given stroke to the area under the static load-stroke curve up to the same

stroke of interest.

Measured stroke and acceleration time histories for a typical dynamic
test are shown as dashed curves in Figure 6.5.2-2. Predicted response using
the single mass model is represented by the solid curves. Good agreement
between predicted and actual stroke is obtained for € = 0.66. However, for
e = 0.66, predicted acceleration is considerably lower than measured acceler-
ation. By selecting a different value of e, accelerations could be matched

but the model would predict incorrect strokes.

The two degree of freedom model, shown in Figure 6.5.2-3, was finally

selected for predicting response of the torus during flat landing. Equatiomns

14
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SELECTED ANALYTICAL MODEL FOR FLAT LANDING
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of motion for this system are;

mX) + KX - KX, =mg (2)

mX, + (K +K)) X) - K X; =myg (3)

with the initial conditions

|
o

X,(0) =

Yo

Xl(O) XZ(O)

[

where V0 is the impacting velocity of the landing system.

It is assumed that X1 is equal to payload stroke, my is equal to the
payload mass (mp), m, is some portion of the torus mass (mt), and the combina-

tion of springs Kl and K2 in series duplicates the static spring constant of
the inflated torus (KF)'

These assumptions are expressed as follows:

my = mp
m, = smt
Kl = aKF
_ [o!
K2 - (a - l) KF

where

e = that portion of torus mass included in dynamic model

a = that portion of torus static spring rate (KF) included in K

1
Neglecting the gravitational force terms in Equation (2) and (3), response

of the payload is expressed as:

[ -wp)? v (wp)? v
X, = 2 . 1 ,
1 > 5 -;— sin wlt + 2 2 Zr' sin mzt
(wl) - (wz) 1 (wl) - (wz) 2

17



In the above expression, frequencies w, and w, are roots of the following

1
polynominal:

2 2
2 (a) (KF)
4 o (o) 2
(wn) - mp + e(o - 1) m KF(wn) + e(a - 1) mpmt 0

for n = 1 and 2.

From test results the following values for o and € were determined which

duplicate torus response.
a = 8.0
e = 0.6

Predicted stroke and acceleration using the two degree of freedom model
is compared with measured response for a typical dynamic test in Figure 6.5.2-4.
Good agreement exists for both stroke and acceleration. In addition, compar-
, isons of predicted maximum stroke and maximum acceleration with test results
are shown in Figure 6.5.2-5 through 6.5.2-7. As can be seen from these
figures, good agreement is obtained between predicted response of the torus
t and test results for different payload weights, inflation pressures, and

landing velocities.

t For end landing, a single degree of freedom model is used to predict
response of the torus. This model, shown in Figure 6.5.2-8, consists of a
mass equal to the sum of payload and torus masses, and a single linear spring.

[ The spring rate is obtained from static tests.

The equation of motion for this system is:
(mp + mt) Y + KEY = (mp + mt) g (4)

Initial conditions are assumed to be:

Y(0)

0

(0)

V0 (impact velocity)

18
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ANALYTICAL MODEL FOR END LANDING

vo
my o+ m,
* y
Ke LANDING SURF ACE
J OO

PAYLOAD MASS
= TORUS MASS
Ko = STATIC SPRING CONSTANT OF INFLATED TORUS, END LOADING

V_ = LANDING VELOCITY

3
d. -
o

'y = STROKE OF mp + m,
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Neglecting the gravitational force term in Equation (4), payload response

is expressed as:

<

0
W
n

where W = KE
n V (mp + mt)

Comparisons of test results with predicted response using this model are

Y =
sin (wnt)

shown in Figures 6.5.2-9 and 6.5.2-10. Agreement between predicted and
measured response for end landings is not as good as it is for flat landings.
However, the basic purpose of end landing tests was to verify that sufficient
stroke capability existed and that accelerations were much lower than for

flat landings. The selected model was sufficient to fulfill these objectives.

6.5.2.2 Parametric analysis. - In order to facilitate computations

required for conducting parametric studies, a computer program was written.
This program computes landing system weight, maximum load factor and landing
velocity as a function of payload size and weight, inflation pressure, and

torus size.
Steps used in the parametric analysis are listed below.

1. Select payload weight and size.

2. Assume lander radius.

3. Assume inflation pressure.

4. Compute torus and inflation system weights.

5. Compute allowable landing velocity and associated payload acceleration.

6. Repeat Steps 2 through 5 until the desired landing velocity and

acceleration are achieved.

In Step (4) maximum torus internal loads are assumed to result from flat
landing and occur at the intersection of the payload ring and torus. These
loads are determined in the following manner. Torus deformations resulting
from flat static loading are shown in Figure 6.5.2-11. 1If similar deforma-

tions are assumed to occur during dynamic loading, it is possible to determine
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FIGURE 6.5.2-9
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internal loads at the intersection of torus and payload ring as shown in View A
of Figure 6.5.2-11. Maximum meridional load in the torus (N¢1) is defined by

the following expression:

an PRl cos ¢2

N, = +
$1 Zan cos ¢l cos ¢1

(5)

where: n = maximum load factor on payload
WP = weight of payload
P = dinternal pressure of deformed torus
R.p = payload radius
R1 = local radius of curvature of deformed torus (Reference

Figure 6.5.2-11)
¢l,¢2 = angles of deformation (Reference Figure 6.5.2-11)

During static tests, angle ¢l and footprint dimension X were measured in
addition to load, pressure and stroke., Variation of angle ¢1, dimension X
and volume ratio (Vi/Vd) with stroke and torus cross-secitonal radius (RS)

are represented by the following equations:

¢1 = 0.422 (S/RS) (6)
X = 0.005 R.s + 0.690S - 0.525 SZ/RS N
V.V, = 0.998 + 0.049 (&) + 0.240 ()2 (8)
i’ d R R
s s
where: Vi = 4jnitial undeformed torus volume
Vd = volume of deformed torus

With the above parameters known, internal pressure (P) can be defined, and
dimension y can be analytically determined by assuming that point "0Q"
(Figure 6.5.2-11) does not move radially during the stroking process. The

equations for y and pressure are,

2
Y = 0.005 R + 2.4095 - 1.171 ;— 9)
S
Vi
P = (Pi + P“)(V;) - P (10)
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- - -~ - Y =T T T

where: P,
i

P

(o]

initial inflation pressure

ambient pressure

Angle ¢2 and radius R1 can now be defined in terms of torus radius (RS) and
payload depth (b).

bp = 8-3 R
NRS -2Y - b
and R = T (12)
sin Rs - X
vhere 20~ TR_-2Y - 13

Although torus thickness at the intersection of the payload and torus is
based on Equation (5), thickness is reduced in proportion to internal meri-
dional loads in three steps as shown in Figure 6.5.2-12. Depending on
geometrical proportions, considerable difference in weight can exist between
a minimum weight torus and a single thickness torus. A minimum weight torus
is one having fabric strength tailored to meridional loads. Relative thick-
nesses of a minimum weight torus, single thickness torus, and stepped thickness
torus are shown in Figure 6.5.2-12. By changing fabric thickness in three
steps, it is possible to achieve up to 85 percent of the potential weight

saving associated with a minimum weight design.

As discussed in Section 6.6.2.2, a stored pressurized gas system is used
to inflate the torus. Weight of the pressure tank accounts for majority of
inflation system weight. The following weight equation, used in parametric

analyses, applied to spherical pressurization tanks.

3
2nr FS
W, = (14)
TANK FTU
where,

r = tank radius

= material density
P = storage pressure

29
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FS

FTU

factor of safety

ultimate tensile strength of tank material

Volume of storage tank required (V) is related to torus volume and

pressure by the following expression:

v = PiYy (15)

For parametric studies a 5 000 psi storage pressure was assumed. Volume
of a spherical tank is defined by the following expression:

v = -f;-nr3 (16)

Combining equations (15) and (16),

3 3p, V
_ i i
r = Gp (17)

Tank radius (r) defined by Equation (17) was used to determine tank weight

in Equation (14).

The two mass model discussed earlier, with o = 8.0 and ¢ = 0.6, is used

in Step (5) to determine maximum load factor and landing velocity.

Footprint area for flat landing is defined by the following equation:

A= TR (X+Y) + X - 2] (18)

Dimensions X and Y are defined by Equations (7) and (9) respectively.
Load stroke curves for parametric studies were obtained by multiplying the
footprint area defined by Equation (18) by the associated torus pressure
defined by Equation (10). The linear spring comstant, KF’ is determined by
equating the energy stored in the linear spring during a given stroke to the

area under static load stroke curve to the same stroke of interest.
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6.6 Lander Parametric Studies

6.6.1 PAYLOAD CONFIGURATION -~ Early in the study of inflatable torus
landers, it was found that weight of landing system was quite sensitive to
payload shape. Introducing a slight change in the ratio of payload diameter
to payload height (a/b) produces a significant change in attenuator weight.
Therefore, it was necessary to select a payload shape which represents a good

compromise between landing system weight and equipment packaging requirements.

To aid in selecting payload configuration, a parametric study was con-
ducted to determine the effects of equipment weight and density, payload
geometry, and thermal control requirements on the landing system. Figure
6.6.1-1 is a flow diagram showing all variables which are influenced by or
have an influence on payload shape. For example, shape of the payload
package affects payload package surface area influencing weight of insulation
and isotope heaters. Since the payload shape is dependent upon many variables,
a computer program was written to aid in determining effect of these variables.
Figure 6.6.1-2 shows the effect of payload dimensions a, b, and a/b, on the
payload volume and surface area. As the value of a/b is increased along a
constant volume line, surface area of the payload increases considerably.

An increase in payload surface area requires additional isotope heaters and

an increase in insulation. The influence of payload shape parameter a/b on
landing system weight is shown in Figure 6.6.1-3. This figure shows that it
is desirable to select a payload having a large value of a/b. Landing system
weight decreases with large values of a/b because a larger percentage of torus

radius is available for dissipating kinetic energy.

Design layouts were prepared to determine the influence of payload shape
parameter (a/b) on packaging of equipment. In order to achieve good equipment
packing densities and due to the height of some equipment, a reasonable value
for a/b is 3. Figure 6.6.1-4 is a payload design layout showing typical
equipment as listed in Figure 6.6.1-5. Equipment is packaged at a density
of 80 lb/ft3 using 80 percent of total available volume. Total payload

density, including structure and thermal control, is 52.5 lb/ft3.
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FIGURE 6.6.1-2

6.6-3
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INFLUENCE OF PAYLOAD SHAPE ON LANDING SYSTEM WEIGHT

LANDING SYSTEM WEIGHT

INSULATION

— 4.07
\ GIMBAL RING /
\ e ——Q‘/
1 \¥

J ) TORUS REF.
—_— — ____// \/

\

/ \
2.0, | a- |

1.0

o\
¢ \&_

0.4

0.2

LANDING SYSTEM WEIGHT, o/b = 1.0
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PAYLOAD PACKAGE
EQUIPMENT INSTALLATION TWTA

(10LB - 360 CU IN.)

GIMBAL RING
DC-DC

CONVERTER REG
(4.0LB -106.4

N CU IN.)
BATTERIES
\ (35.3LB -
\ 618 CU IN)
7N
AN

~ N

COMMUNICATIONS
(52.96 LB -
1011 CU IN.)

SCIENCE
(39 LB -
861 CU IN))

PNEUMATIC
BOTTLE

SEQUENCER
(11.4LB -
297 CUIN.) —

— PWR SWITCH LOGIC
(6 LB -~ 160 CU IN.}

RADAR & ORIENTATION
(4.8 LB - 95CU IN)

SOLA(';TAORRREADY) BATTERY CHARGERS
PAYLOAD —\ (6 LB ~ 160 CU IN.) PYROTECHNIC SHAFT LOCK

GIMBAL BEARINGS
- Y
Ay
Y.

EQUIPMENT PALLET INSULATION GIMBAL LOCK BLADDER

|-
—— J%__,

FIGURE 6.6.1-4

6.6-6
36

MCDONNELL ASTRONAUTICS COMPANY




TYPICAL INTERMEDIATE LANDER EQUIPMENT

VOLUME WEIGHT

ITEM (IN.3) (LB)
SEQUENCER 297.0 1.4
COMMUNICATIONS 1370.6 63.0
RADAR & ORIENTATION 95.0 48
ELECTRICAL POWER 1042.8 76.5
SCIENCE 860.5 39.0
MECHANISMS 227.0 24.3
WIRING & MISC 1 058.0 56.0
SUBTOTAL EQUIPMENT 4950.9 275.0
STRUCTURE 515.1 52.0
THERMAL CONTROL 5 540.0 49.0
TOTAL PAYLOAD 11 006.0 376.0
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6.6.2 LANDING SYSTEM - Design of an interplanetary landing system is
complicated by many severe enviromments experienced during its lifetime. Heat
sterilization requirements and thermal environment experienced on the surface
of Mars have the greatest effect on landing system design because of the use

of non-metallic materials.

Since one of the basic missions of an interplanetary lander is to study
the possibility of life forms existing on various planets, it is imperative
that the landing system not carry any life forms which would contaminate the
planet or nullify experiments. Since this requirement dictates that all
components of the landing system must be terminally heat sterilized, selection
of components is greatly affected. Thermal environments in addition to steril-
ization occurring during interplanetary cruise, entry, inflation, landing, and
post landing, impose severe requirements for both high and low temperature
capability. System components must sustain these temperature extremes for
long periods of time along with the capability of changing from one extreme

to the other in a very short time.

The vacuum of space also has a significant effect on landing system
design. Some organic materials and composite materials are subject to out-
gassing and when combined with radiation usually lead to reduced flexibility

and, in some cases, a decrease in mechanical properties.

6.6.2.1 Materials. — Selection of adequate materials for an inflatable

lander requires close examination of candidate material properties.

Material properties considered include:

Strength Density

Thermal Resistance Sterilization Capability
Foldability Abrasion Resistance
Permeability Damping Characteristics
Adhesive Capability Vacuum and Radiation Resistance

Puncture Resistance

The requirement that all materials must be thermally sterilized is

probably the major consideration that limits the selection of fabric materials
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and elastomers for use in inflatable structures. Many organic materials
possessing high strength to weight ratios are severely degraded during

sterilization.

Flexibility and foldability are factors that must be considered, since
the material will be stored in a deflated condition for a long period of time.
After the material is subjected to severe environments of vacuum, radiation,
and large temperature gradients, it must not contain cracks or adhere to
itself. It must be sufficiently flexible at inflation temperatures to prevent

failure due to rapid inflation.

Strength and density of materials are important in order to provide a
lightweight attenuation system. Materials must retain satisfactory physical

and mechanical properties after being subjected to several severe environments.

Abrasion resistance of either the cloth or the elastomer is considered,
but is not a major factor in the selection of the materials. Abrasion of

the torus surface is slight due to the low inflation pressures of the system.

Permeability of the cloth and elastomers is also considered of secondary
importance since the length of time for complete inflation is relatively
short. With the torus containing in excess of 1000 ft3 of gas at pressures
of about 10 psig, no appreciable amount of gas escapes within the time re-
quired for full inflation. However, if the torus must remain inflated for

extended surface operation, then leakage is very important.

Fabrics available for fabrication of the inflatable structure include

those made from metal, ceramic, and organic fibers as shown in Figure 6.6.2-1.

Metal fabrics can be woven from 0.0015 inch diameter or larger monofila-
ment wire in almost any weave desired. Woven metal fabrics produced from
monof ilament wire have low flexibility and high porosity. These properties
can be improved, however, by weaving the fabric from stranded yarns of fine

superalloy.

Strength to weight ratio of candidate organic fabrics is far superior
to metal fabrics. However, metal fabrics can withstand much higher tempera-

tures and are more resistant to abrasion. In addition, since the permeability
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CANDIDATE FABRICS FOR TORUS

ORGANIC CERAMIC METALLIC

POLYOLEFINS FIBERGLASS LOW CARBON STEEL

POLYETHYLENE “E” GLASS 300 SERIES STAINLESS STEEL

POLYPROPYLENE $-994 GLASS TAINLE

‘ YM-31A GLASS WROUGHT SUPERALLOYS
POLYAMIDE
HOLLOW GLASS
NYLON ALUMINUM AND ALUMINUM

HT-1 (*““NOMEX")

POLYESTER
DACRON

POLYBENZIMIDAZOLE (PBI)
PARTIALLY CARBONIZED
CARBON

GRAPHITE

LEACHED FIBERGLASS

QUARTZ FIBERS

ALLOY

TITANIUM AND TITANIUM
ALLOY
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of the metal fabrics is high, it is necessary to use an internal liner in the

torus for gas retention.

Storage volume of the deflated structure, when produced from metallic
fabrics rather than organic fabrics, is considerably greater due to the poor
foldability of the metallic fabrics and the addition of a liner. Metallic
fabric structure is heavier and takes up more space in the aeroshell than
the organic fabric structure. Therefore, metal fabrics are not selected
unless the stringent requirements of thermal and space environments exceed

the limits of organic fabrics.

Ceramic fabrics considered included those constructed from fiberglass and
quartz fibers. These materials easily withstand sterilization, however, they
are not satisfactory due to their brittleness and poor abrasion resistance.

These fibers are easily scratched which may eventually lead to fiber failure.

Most organic fabric materials were eliminated due to severe degradation
of physical and mechanical properties during thermal sterilization. Candidate
materials are nylon, HT-1 (a high temperature polymide known by its trade

name, Nomex), and Dacron (a polyester fiber).

Nylon is seriously degraded by thermal sterilization and as a result was
eliminated from further consideration. The average strength loss of Dacron
after sterilization and 30-day vacuum exposure was about 20 percent. Since
test data indicated continuing material degradation due to vacuum soaking
throughout the 30-day test period, it is doubtful that Dacron would be

acceptable after 230 days in a vacuum.

The leading candidate material is HT-1 (Nomex) with average strength
losses resulting from both sterilization and vacuum exposures of less then
5 percent. At room temperature, the strength of Nomex is inferior to nylon
and Dacron, however, when Dacron was tested at 200°F, its strength to weight
ratio was found to be inferior to Nomex. Therefore, due to the requirement
for sterilization, Nomex is preferred for inflatable structure. Pertinent

factors influencing fabric selection are summarized in Figure 6.6.2-2.

The fabric selected for the inflatable structure is coated with an
elastomer to seal the structure for gas retention and to provide abrasion and
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FABRIC SELECTION SUMMARY

ORGANIC

NYLON
e HIGH STRENGTH TO WEIGHT RATIO AT ROOM TEMPERATURE
o SERIOUS DEGRADATION AFTER THERMAL STERILIZATION

DACRON
e 20% STRENGTH DEGRADATION AFTER THERMAL STERILIZATION AND YACUUM EXPOSURE
e STRENGTH TO WEIGHT RATIO INFERIOR TO NOMEX AT 200°F

NOMEX
o ONLY SLIGHT DEGRADATION AFTER STERILIZATION AND VACUUM EXPOSURE
o RETAINS MECHANICAL PROPERTIES AT ELEVATED TEMPERATURES

CERAMIC
e ELIMINATED DUE TO THEIR BRITTLENESS AND POOR ABRASION RESISTANCE

METALLIC
e CAN WITHSTAND STERILIZATION TEMPERATURES
¢ GOOD ABRASION RESISTANCE
o HIGH DENSITY
o VERY HIGH PERMEABILITY
o LOWSTRENGTH TO WEIGHT RATIO
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puncture protection to the basic fabric. Low and elevated temperature require-
ments greatly restrict the choice of elastomers also. It appears that within
the present state-of-the-art, a silicone rubber compound of the methyl-phenyl
type is the best selection to meet all criteria. Candidate elastomers are

compared in Figure 6.6.2-3.

6.6.2.2 Inflation systems. - Three basic inflation systems were consider-

ed for the intermediate lander. These systems are stored pressurized gas,
cool gas generator, and hot gas gemerator. To select the proper inflation

system, considerations were given to the following items:

Simplicity and Reliability Ambient Conditions

Inflated Volume Transient Temperatures & Pressures
Inflated Pressure Effect of Sterilization

Time Required for Inflation System Weight and Volume

Leakage Packaging

Cost

A cool gas generator consists of a gas stored at high pressure and a
hot gas propellant. TFor pressurization of the torus, the hot propellant gas
is mixed with the stored gas and injected into the storage volume resulting
in a combined system which has a high ratio of gas volume to storage volume
resulting in a lightweight design. Inflation rate is very rapid regardless
of temperatures. Cool gas from storage and hot gas from propellant are mixed
in proper proportions resulting in a gas temperature that is not detrimental

to the fabric.

The hot gas generator utilizes exhaust products from burning of a solid
or liquid propellant to achieve rapid inflation. Also, since the gas is
delivered at high temperatures, it must be delivered at a sufficiently high
pressure to allow for subsequent cooling. These high pressures and high
temperatures are harmful to the fabric and elastomers of the inflatable

structure.

The stored pressurized gas system was chosen for the parametric studies
primarily because it is simple, highly reliable, and it is competitive in

weight. This system consists of a high ratio of gas volume to storage volume.
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High pressure gas is released upon command through a pressure or flow device,
fed into a manifold around the gimbal ring, and expanded into the torus. The
torus must be fully inflated during parachute descent requiring pressurization
within 40-50 seconds. This rapid expansion of most gases requires thermal
energy to bring them to full inflation efficiency. However, by using helium
as the pressurant, thermal energy is not required. Tank weight and size are
based on storing helium at 5000 lb/in2 in a titanium spherical tank. After
torus inflation, the storage tank is released with the parachute to eliminate

attenuating this additional energy at landing.
Pertinent features of inflation systems are summarized in Figure 6.6.2-4,

6.6.2.3 Study results. - In the preceding paragraphs, various components

of the torus landing system were discussed and preferred approaches selected.
These components include the inflation system and materials for the torus.
In addition, analytical methods and computer programs for determining landing

system weight and performance were presented.

A stored pressurized gas system using helium was selected in Section
6.6.2.2. This system is comprised of the gas and the pressure tank. Associa-
ted valves and lines are assumed to be a part of the payload. Tank weight is
obtained from Equation (14) (Section 6.5.2.2) using titanium alloy 61A-4V as the
tank material and a factor of safety of 2.22. This titanium alloy has the

following properties:

160 000 lb/in2

o]
|

TU

0.160 1b/in>

©
]

When the lander is separated from parachute, the pressure tank remains
with the parachute. Therefore, the tank is not included in landed mass

although it is considered part of landing system.

Nomex cloth was selected in Section 6.6.2.2 for the torus material and
is used in parametric studies. Nomex has a strength to weight ratio of

1 000 o000 ;hliﬂé. Weight of elastomer used to seal the Nomex and provide
1b/in
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INFLATION SYSTEMS

STOWED PRESSURIZED GAS
e HIGH RATIO OF GAS VOLUME TO STORAGE VOLUME
e RAPID INFLATION
o COOL TEMPERATURES DUE TO EXPANSION OF SOME GASES
e SIMPLE AND RELIABLE

COOL GAS GENERATOR
o HOT PROPELLANT GAS IS MIXED WITH STORED GAS
e RAPID INFLATION
e LIGHTWEIGHT
o SIMPLE

HOT GAS GENERATOR
e HOT PROPELLANT GAS IS USED FOR INFLATION
e HOT GAS MAY BE HARMFUL TO MATERIALS
e LIGHTWEIGHT
o RAPID INFLATION
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scuff resistance is assumed to be equal to cloth weight. A seam efficiency

factor of 0.85 is used to account for weight of material overlap at seams.

Landing system design parameters for 100, 200, 300 and 400 pound payload
weights are shown in Figure 6.6.2-5 through 6.6.2-8. These curves define
landing system weight, maximum load factor, torus radius and inflation pressure
as a function of landing velocity. Using these curves it is possible to select
torus geometry and inflation pressure which result in minimum landing system
weight. For example, on Figure 6.6.2-5, the dashed line defines a minimum
weight landing system capable of landing a 100 pound payload at 150 ft/sec.
Landing system weight is 115 pounds; lander radius is 40 inches; maximum load
factor is 620 Earth g's; and inflation pressure is 10 psig. It is important
to note that load factor could be reduced by using a larger lander radius with
a slight increase in landing system weight. Minimum landing system weight
obtained from Figures 6.6.2-5 through 6.6.2-8 are plotted in Figure 6.6.2-9.
as a function of landing velocity and payload weight.
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MINIMUM LANDING SYSTEM WEIGHT - LB
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6.7 Additional Design Considerations

6.7.1 PAYLOAD ATTACHMENT - Three concepts for attaching payload to torus
were studied. These concepts were: fixed payload, single gimballed payload,

and double gimballed payload.

The fixed payload concept attaches the payload package directly to the
torus. Since the torus is bi-stable, provisions for instrument deployment
consist of one of the following arrangements: 1) Dual experiments and equip-
ment, 2) Individual gimballing of selected experiments requiring orientation,
3) Use of a flip-over mechanism to right the lander in case it comes to rest
upside down. This latter concept allows single instruments and a single solar

array.

A single gimballed payload concept utilizes one gimbal ring located
around the payload circumference as shown in Figure 6.6.1-4. The payload is
mounted in a single axis trunion which allows the entire payload to rotate.

A gimbal lock bladder installed around the periphery of the payload distributes
impact léads to the gimbal ring and into the torus landing system. This con-
cept permits installation of single fixed instruments and a single solar array.
The lock bladder is inflated prior to entry and vented after landing. After
the payload has rotated to achieve an upright position, trunion locks are

engaged to rigidize the gimbal mechanism.

The double gimballed payload concept provides the payload with two axes
of rotation thus permitting alignment to local gravity vector. This concept
is similar to the single gimbal concept with the exception of another trunion
axis located in an inner gimbal ring. The inner gimabl and payload are
supported on precision bearing trunions during leveling. Trunions are in

elastic mounts so that they do not carry any appreciable load during impact.

The weight estimated for the single gimbal concept was used in parametric

studies.

6.7.2 REBOUND DAMPING - The inflatable landing system stores a large
amount of energy during landing which unless dissipated, causes considerable

rebound. Examination of test data given in Appendix A shows that the average
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velocity at second impact was about 73 percent of initial impact velocity for

flat landing and about 88 percent for end landings.

Rebound damping of a nonventing system is dependent upon internal working
of the fabric and gas. Previous limited drop testing of the model indicated
that energy losses for oblique impacts may be significatly higher than those
occurring for flat or end landing. Thus, it may be desirable to select a
landing orientation which will insure an oblique landing initially. Further

tests and analyses are needed to confirm this however.

Damping by external venting of the torus is accomplished by using either
fixed or variable orifices. The fixed orifice concept is activated by an
impact switch which allows pressure relief at instant of impact. The variable
orifice is a method which regulates internal pressure by allowing the orifice
area to increase as the internal pressure increases, thus approaching ideal
orifice flow characteristics. Normally, performance is increased by utilizing
variable orifices instead of fixed orifices. However, because of low atmo-
spheric pressure on Mars, torus pressures do not increase significantly

during landing thus the advantage offered by variable orifices is reduced.

Rebound damping of the landing system can also be accomplished by inter-
nal compartmentation with permeable dividers, fixed orifices, or by controlled

venting.

6.7.3 ALTERNATE LANDING SYSTEMS - Several inflated landing systems in-
cluding inflatable single sphere, multiple spheres, single torus, triple torus,
and multiple torus were studied. As a result of these studies, the triple
torus configuration shown in Figure 6.7.3-1 was chosen as an alternate. This
configuration consists of three inflated tori surrounding the payload. The
two large tori are designed to attenuate the payload while the small torus is
used to prevent the lander from coming to rest on edge. Payload attachment is
similar to the single torus. The primary advantage of the triple torus con-
figuration is the capability for deflating the upper torus thus greatly in-
creasing space available for atmospheric sensor deployment. Although the
triple torus landing system is slightly lighter in weight than the single
torus this advantage is overshadowed by the complications of additional mani-

folds and valves in the inflation system.
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6.8 Conclusions

Inflatable torus landing systems are feasible for the range of landing
velocities and payload weights considered. Reasonable landing system weights
are achieved for payload weights up to 400 1b and landing velocities less than
about 150 ft/sec. At higher velocities, landing system weight increases
rapidly. However, if minimizing landing load factors is a serious requirement,
then the inflatable torus concept may be desirable for velocities above 150
ft/sec also. Methods for reducing rebound should be studied and verified by

test so that the time from first impact to rest can be minimized.

Payload strokes and accelerations can be determined analytically for flat
landings using a two degree of freedom model. Parameters used in the analyti-
cal model were defined and verified by test. In general, strokes required
for end landings are approximately twice the strokes required for flat landings.
However, accelerations experienced by payload during an end landing were about

one-half those experienced during flat landings.
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APPENDIX A - TEST RESULTS

Static and dynamic tests of a model lander were conducted to obtain
empirical data for lander parametric studies. The test model, shown in
Figure A-1, consists of an inflated torus continuously attached to an inner
payload ring. Maximum diameter of model is 42.78 inches and payload diameter

is 13.14 inches.
Results of static and dynamic tests are presented in this section.

Static Tests - Static test set~up is shown in Figure A~2 for flat and end

tests. The torus rested on a flat rigid surface and load was applied to the
payload ring. All tests were conducted in ambient conditions and internal
torus pressure was measured throughout the test. Payload displacement was
read from a scale and pointer device. The test schedule is also shown in
Figure A-2. Flat and end loading static test results are shown in Figures

A-3 and A-4 respectively.

Dynamic Tests ~ Dynamic tests of the torus were conducted by dropping

the model as shown in Figure A-5. Tests were conducted in the Zero Gravity
Research Facility at the NASA Lewis Research Center in Cleveland, Ohio. The

drop test schedule is shown in Figure A-6.

For flat landings, the torus was guided by a single cable stretched from
the top of the chamber to the landing surface. The lower portion of the cable
was calibrated so that payload stroke could be read from high-speed films.
Timing marks were placed on films so that landing velocity could be determined
also. Three high speed cameras were located at the landing surface. One
camera focused directly on the cable for stroke and velocity measurements
while the other two, spaced 90 degrees apart, recorded lander orientation
during impact. Internal pressure was monitored throughout each test by means
of a pressure transducer located on the payload. Three single-axis accelero-
meters were used to measure accelerations in three orthogonal directions during
impact. For many of the drops, second, third, and sometimes fourth impact data

were obtained. Results of flat landing tests are presented in Table A-1.
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TEST MODEL DESCRIPTION
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STATIC TEST SET-UP

FORCE

RIGID
LOADING
FRAME

PRESSURE
GAUGE
" TORUS
SCALE &
POINTER
V777 =Y 777 Ya & %
3 PRESSURE
3 TORUS
3 TN GAUGE
FORCE [
v
SCALE & POINTER
Ve
FLAT LOADING END LOADING
SCHEDULE
INITIAL MAXIMUM
TEST LANDER
PRESSURE | PAYLOAD STROKE
ORIENTATION
NUMBER (PSIG) (IN.)
1 FLAT 2.0 3.0
2 FLAT 4.0 4.0
3 FLAT 6.0 5.0
4 END 2.0 5.0
5 END 4.0 6.5
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DYNAMIC TEST SET-UP

PP

%

e

GUIDE CABLES

TORUS

CALIBRATIONS

LANDING

SURFACES

CIIEIS /////l///////////

L

S

FLAT LANDING END LANDING
INSTRUMENTATION PURPOSE

3 — ACCELEROMETERS

DETERMINE ACCELERATIONS IN
THREE DIRECTIONS

3 - HIGH SPEED CAMERAS

DETERMINE PAYLOAD STROKE,
LANDING VELOCITY AND LANDER
ORIENTATION

1 — PRESSURE TRANSDUCER

DETERMINE TORUS PRESSURE AT
IMPACT
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TORUS DYNAMIC TEST SCHEDULE

INFLATION |PAYLOAD | DROP
NLT,S;TER A"TATNI‘;LNDGE PRESSURE | WEIGHT | HEIGHT

(PSIG NOMINAL)|  (LB) (FT)

1 FLAT 2.0 1.0 25.0
2 4.1 25.0
3 7.5 25.0
4 7.5 25.0
5 7.5 6.2
6 4.1 6.2
7 1.0 6.2
8 2.0 4.1 39.0
9 4.0 7.5 56.0
10 4.1 56.0
1 1.0 56.0
12 7.5 76.0
13 4.0 4.1 99.5
14 6.0 7.5 56.0
15 4.1 56.0
16 7.5 99.5
17 FLAT 6.0 4.1 155.0
18 END 4.0 4.4 56.0
19 4.0 4.4 99.5
20 6.0 4.4 56.0
21 4.4 99.5
22 4.4 155.0
2 » 7.8 56.0
24 END . 6.0 7.8 99.5

63 FIGURE A—6
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TABLE A-1

MODEL DYNAMIC TEST RESULTS
FLAT LANDING

PAY LOAD [INFLATION{ LANDING MAXIMUM MAXIMUM LOAD FACTOR ON
TEST |IMPACT .

NUMBER |NUMBER | WEIGHT [PRESSURE\VELOCITY|PAYLOAD STROKE|  PAYLOAD (EARTH g's)
(LB) (LB/IN2) | (FT/SEC) (IN.) n_ n n

1 1 11.0 2.0 36 3.8 17 32 134
1 2 1.0 2.0 26 3.1 13 6 105
2 1 4.1 2.0 39 2.9 24 8 252
2 2 4. 2.0 23 2.0 5 26 141
3 1 7.5 M m (m Q)] (n 159
3 2 7.5 Q) m M (M (m (n
4 1 7.5 2.1 39 3.7 18 1 177
4 2 7.5 2.1 34 3.1 10 8 164
5 1 7.5 2.1 19 1.8 22 2 )
5 2 7.5 2.1 15 1.5 7 9 m
5 3 7.5 2.1 12 1.2 12 9 (1
5 4 7.5 2.1 8 0.9 13 6 47
6 1 4.1 2.1 20 1.5 25 20 125
6 2 4.1 2.1 14 1.0 17 9 83
6 3 4.1 2.1 7 0.6 15 3 45
7 1 1.0 2.1 19 2.0 2 17 82
7 2 1.0 2.1 17 1.8 18 13 72
8 1 4.1 2.1 50 4.0 13 13 289
8 2 4.1 2.1 32 2.4 18 15 206
9 1 7.5 3.8 60 4.3 16 17 365
9 2 7.5 3.8 51 3.4 24 22 322
10 1 4.1 3.8 60 3.7 3 n 487
10 2 4.1 3.8 40 2.3 5 9 325
10 3 4.1 3.8 27 1.5 3 22 250
10 4 4.1 3.8 18 1.0 2 13 187

NOTE: (1) NO DATA OBTAINED
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TABLE A-1(Continued)

MODEL DYNAMIC TEST RESULTS (Continued)
FLAT LANDING

TesT | mpacT [PAYLOAD INFLATION| LANDING MAX IMUM MAXIMUM LOAD FACTO'R ON

NUMBER |NUMBER | WEIGHT |PRESSURE|VELOCITY|PAYLOAD STROKE PAYLOAD (EARTH g's)
(LB)  |(LB/IN2) | (FT/SEC) (IN.) n, n, n,

n 1 11.0 3.8 60 5.2 21 18 295
n 2 11.0 3.8 53 4.4 17 19 265
1 3 11.0 3.8 46 3.8 12 18 250
12 1 7.5 3.8 70 5.2 18 24 425
12 2 7.5 3.8 57 4.2 13 26 362
12 3 7.5 3.8 46 3.7 12 12 325
13 1 4.1 3.8 80 5.3 14 9 642
13 2 4.1 3.8 58 3.3 22 35 425
13 3 4.1 3.8 34 2.1 16 13 314
13 4 41 3.8 22 1.4 9 16 201
14 1 1.5 5.8 60 3.8 15 14 450
14 2 7.5 5.8 50 3.0 16 10 419
14 3 7.5 5.8 3 2.3 12 9 312
15 1 4.1 5.8 60 3.2 14 n 625
15 2 4.1 5.8 M 2.1 16 20 425
15 3 4.1 5.8 28 1.4 31 15 312
15 4 4.1 5.8 19 0.9 36 13 187
16 1 7.5 5.8 80 5.4 18 6 562
16 2 7.5 5.8 68 4.3 17 15 498
16 3 7.5 5.8 53 3.3 15 17 435
17 1 4.1 5.8 100 5.8 218 19 942
17 2 4.1 5.8 67 3.4 ) 94 653
17 3 4.1 5.8 42 2.0 (M 26 427
17 4 4.1 5.8 26 1.2 (n 25 251
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For end landings, the torus was guided by two cables as shown in

Figure A-5. Instrumentation used to measure velocity, stroke, and accelera-

tion was similar to that used for flat landing tests.

tests are presented in Table A-2.
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TABLE A-2

MODEL DYNAMIC TEST RESULTS

END LANDING
TEST | IMPACT |PAY LOAD|INFLATION| IMPACT MAXIMUM MAXIMUM LOAD FACTOR ON

NUMBER | NUMBER| WE'GHT | PRESSURE |VELOCITY|PAYLOAD STROKE PAYLOAD (EARTH g°s)
(LB) |(LB/IN2) | (FT/SEC) (IN.) n n n

18 1 4.4 4.2 58 8.8 21 195 21
18 2 4.4 4.2 42 7.3 152 9
18 3 4.4 4.2 38 4.6 5 120 7
19 1 4.4 4.2 79 11.0 28 278 62
20 1 4.4 6.0 56 8.1 24 245 14
20 2 4.4 6.0 48 6.5 20 205 9
21 1 4.4 6.0 80 10.5 36 325 25
21 2 4.4 6.0 54 7.5 (1) 208 §))
22 1 4.4 6.0 100 13.3 40 419 38
23 1 7.8 6.0 60 8.8 16 195 8
23 2 7.8 6.0 54 8.0 17 173 6
24 1 7.8 6.0 80 1.7 32 290 14
24 2 7.8 6.0 72 10.1 22 245 9
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